# Signals and Systems Download PDF

This book is the second edition of a text designed for undergraduate courses in signals and systems. While such courses are frequently found in electrical engineering curricula, the concepts and techniques that form the core of the subject are of fundamental importance in all engineering disciplines. In fact, the scope of potential and actual applications of the methods of signal and system analysis continues to expand as engineers are confronted with new challenges involving the synthesis or analysis of complex processes.

For these reasons we feel that a course in signals and systems not only is an essential element in an engineering program but also can be one of the most rewarding, exciting, and useful courses that engineering students take during their undergraduate education. Our treatment of the subject of signals and systems in this second edition maintains the same general philosophy as in the first edition but with significant rewriting, restructuring, and additions. These changes are designed to help both the instructor in presenting the subject material and the student in mastering it. In the preface to the first edition we stated that our overall approach to signals and systems had been guided by the continuing developments in technologies for signal and system design and implementation, which made it increasingly important for a student to have equal familiarity with techniques suitable for analyzing and synthesizing both continuous-time and discrete-time systems. As we write the preface to this second edition, that observation and guiding principle are even more true than before. Thus, while students studying signals and systems should certainly have a solid foundation in disciplines based on the laws of physics, they must also have a firm grounding in the use of computers for the analysis of phenomena and the implementation of systems and algorithms. As a consequence, engineering curricula now reflect a blend of subjects, some involving continuous-time models and others focusing on the use of computers and discrete representations. For these reasons, signals and systems courses that bring discretetime and continuous-time concepts together in a unified way play an increasingly important role in the education of engineering students and in their preparation for current and future developments in their chosen fields.

It is with these goals in mind that we have structured this book to develop in parallel the methods of analysis for continuous-time and discrete-time signals and systems. This approach also offers a distinct and extremely important pedagogical advantage. Specifically, we are able to draw on the similarities between continuous- and discrete-time methods in order to share insights and intuition developed in each domain. Similarly, we can exploit the differences between them to sharpen an understanding of the distinct properties of each. In organizing the material both originally and now in the second edition, we have also considered it essential to introduce the student to some of the important uses of the basic methods that are developed in the book. Not only does this provide the student with an appreciation for the range of applications of the techniques being learned and for directions for further study, but it also helps to deepen understanding of the subject. To achieve this goal we include introductory treatments on the subjects of filtering, communications, sampling, discrete-time processing of continuous-time signals, and feedback. In fact, in one of the major changes in this second edition, we have introduced the concept of frequency domain filtering very early in our treatment of Fourier analysis in order to provide both motivation for and insight into this very important topic. In addition, we have again included an up-to-date bibliography at the end of the book in order to assist the student who is interested in pursuing additional and more advanced studies of the methods and applications of signal and system analysis.

The organization of the book reflects our conviction that full mastery of a subject of this nature cannot be accomplished without a significant amount of practice in using and applying the tools that are developed. Consequently, in the second edition we have significantly increased the number of worked examples within each chapter. We have also enhanced one of the key assets of the first edition, namely the end-of-chapter homework problems. As in the first edition, we have included a substantial number of problems, totaling more than 600 in number. A majority of the problems included here are new and thus provide additional flexibility for the instructor in preparing homework assignments.

In addition, in order to enhance the utility of the problems for both the student and the instructor we have made a number of other changes to the organization and presentation of the problems. In particular, we have organized the problems in each chapter under several specific headings, each of which spans the material in the entire chapter but with a different objective. The first two sections of problems in each chapter emphasize the mechanics of using the basic concepts and methods presented in the chapter. For the first of these two sections, which has the heading Basic Problems with Answers, we have also provided answers (but not solutions) at the end of the book. These answers provide a simple and immediate way for the student to check his or her understanding of the material. The problems in this first section are generally appropriate for inclusion in homework sets. Also, in order to give the instructor additional flexibility in assigning homework problems, we have provided a second section of Basic Problems for which answers have not been included.

A third section of problems in each chapter, organized under the heading of Advanced Problems, is oriented toward exploring and elaborating upon the foundations and practical implications of the material in the text. These problems often involve mathematical derivations and more sophisticated use of the concepts and methods presented in the chapter.

Some chapters also include a section of Extension Problems which involve extensions of material presented in the chapter and/or involve the use of knowledge from applications that are outside the scope of the main text (such as advanced circuits or mechanical systems). The overall variety and quantity of problems in each chapter will hopefully provide students with the means to develop their understanding of the material and instructors with considerable flexibility in putting together homework sets that are tailored to the specific needs of their students. A solutions manual is also available to instructors through the publisher. Another significant additional enhancement to this second edition is the availability of the companion book Explorations in Signals and Systems Using MATLAB by Buck, Daniel, and Singer. This book contains MATLAB™-based computer exercises for each topic in the text, and should be of great assistance to both instructor and student Students using this book are assumed to have a basic background in calculus as well as some experience in manipulating complex numbers and some exposure to differential equations.

For these reasons we feel that a course in signals and systems not only is an essential element in an engineering program but also can be one of the most rewarding, exciting, and useful courses that engineering students take during their undergraduate education. Our treatment of the subject of signals and systems in this second edition maintains the same general philosophy as in the first edition but with significant rewriting, restructuring, and additions. These changes are designed to help both the instructor in presenting the subject material and the student in mastering it. In the preface to the first edition we stated that our overall approach to signals and systems had been guided by the continuing developments in technologies for signal and system design and implementation, which made it increasingly important for a student to have equal familiarity with techniques suitable for analyzing and synthesizing both continuous-time and discrete-time systems. As we write the preface to this second edition, that observation and guiding principle are even more true than before. Thus, while students studying signals and systems should certainly have a solid foundation in disciplines based on the laws of physics, they must also have a firm grounding in the use of computers for the analysis of phenomena and the implementation of systems and algorithms. As a consequence, engineering curricula now reflect a blend of subjects, some involving continuous-time models and others focusing on the use of computers and discrete representations. For these reasons, signals and systems courses that bring discretetime and continuous-time concepts together in a unified way play an increasingly important role in the education of engineering students and in their preparation for current and future developments in their chosen fields.

It is with these goals in mind that we have structured this book to develop in parallel the methods of analysis for continuous-time and discrete-time signals and systems. This approach also offers a distinct and extremely important pedagogical advantage. Specifically, we are able to draw on the similarities between continuous- and discrete-time methods in order to share insights and intuition developed in each domain. Similarly, we can exploit the differences between them to sharpen an understanding of the distinct properties of each. In organizing the material both originally and now in the second edition, we have also considered it essential to introduce the student to some of the important uses of the basic methods that are developed in the book. Not only does this provide the student with an appreciation for the range of applications of the techniques being learned and for directions for further study, but it also helps to deepen understanding of the subject. To achieve this goal we include introductory treatments on the subjects of filtering, communications, sampling, discrete-time processing of continuous-time signals, and feedback. In fact, in one of the major changes in this second edition, we have introduced the concept of frequency domain filtering very early in our treatment of Fourier analysis in order to provide both motivation for and insight into this very important topic. In addition, we have again included an up-to-date bibliography at the end of the book in order to assist the student who is interested in pursuing additional and more advanced studies of the methods and applications of signal and system analysis.

The organization of the book reflects our conviction that full mastery of a subject of this nature cannot be accomplished without a significant amount of practice in using and applying the tools that are developed. Consequently, in the second edition we have significantly increased the number of worked examples within each chapter. We have also enhanced one of the key assets of the first edition, namely the end-of-chapter homework problems. As in the first edition, we have included a substantial number of problems, totaling more than 600 in number. A majority of the problems included here are new and thus provide additional flexibility for the instructor in preparing homework assignments.

In addition, in order to enhance the utility of the problems for both the student and the instructor we have made a number of other changes to the organization and presentation of the problems. In particular, we have organized the problems in each chapter under several specific headings, each of which spans the material in the entire chapter but with a different objective. The first two sections of problems in each chapter emphasize the mechanics of using the basic concepts and methods presented in the chapter. For the first of these two sections, which has the heading Basic Problems with Answers, we have also provided answers (but not solutions) at the end of the book. These answers provide a simple and immediate way for the student to check his or her understanding of the material. The problems in this first section are generally appropriate for inclusion in homework sets. Also, in order to give the instructor additional flexibility in assigning homework problems, we have provided a second section of Basic Problems for which answers have not been included.

A third section of problems in each chapter, organized under the heading of Advanced Problems, is oriented toward exploring and elaborating upon the foundations and practical implications of the material in the text. These problems often involve mathematical derivations and more sophisticated use of the concepts and methods presented in the chapter.

Some chapters also include a section of Extension Problems which involve extensions of material presented in the chapter and/or involve the use of knowledge from applications that are outside the scope of the main text (such as advanced circuits or mechanical systems). The overall variety and quantity of problems in each chapter will hopefully provide students with the means to develop their understanding of the material and instructors with considerable flexibility in putting together homework sets that are tailored to the specific needs of their students. A solutions manual is also available to instructors through the publisher. Another significant additional enhancement to this second edition is the availability of the companion book Explorations in Signals and Systems Using MATLAB by Buck, Daniel, and Singer. This book contains MATLAB™-based computer exercises for each topic in the text, and should be of great assistance to both instructor and student Students using this book are assumed to have a basic background in calculus as well as some experience in manipulating complex numbers and some exposure to differential equations.

With this background, the book is self-contained. In particular, no prior experience with system analysis, convolution, Fourier analysis, or Laplace and z-transforms is assumed. Prior to learning the subject of signals and systems most students will have had a course such as basic circuit theory for electrical engineers or fundamentals of dynamics for mechanical engineers. Such subjects touch on some of the basic ideas that are developed more fully in this text. This background can clearly be of great value to students in providing additional perspective as they proceed through the book. The Foreword, which follows this preface, is written to offer the reader motivation and perspective for the subject of signals and systems in general and our treatment of it in particular. We begin Chapter 1 by introducing some of the elementary ideas related to the mathematical representation of signals and systems. In particular we discuss transformations (such as time shifts and scaling) of the independent variable of a signal. We also introduce some of the most important and basic continuous-time and discrete-time signals, namely real and complex exponentials and the continuous-time and discrete-time unit step and unit impulse. Chapter 1 also introduces block diagram representations of interconnections of systems and discusses several basic system properties such as causality, linearity and time-invariance. In Chapter 2 we build on these last two properties, together with the sifting property of unit impulses to develop the convolution-sum representation for discrete time linear, time-invariant (LTI) systems and the convolution integral representation for continuous-time LTI systems. In this treatment we use the intuition gained from our development of the discrete-time case as an aid in deriving and understanding its continuous time counterpart. We then turn to a discussion of causal, LTI systems characterized by linear constant-coefficient differential and difference equations. In this introductory discussion we review the basic ideas involved in solving linear differential equations (to which most students will have had some previous exposure) and we also provide a discussion of analogous methods for linear difference equations. However, the primary focus of our development in Chapter 2 is not on methods of solution, since more convenient approaches are developed later using transform methods. Instead, in this first look, our intent is to provide the student with some appreciation for these extremely important classes of systems, which will be encountered often in subsequent chapters. Finally, Chapter 2 concludes with a brief discussion of singularity functions—steps, impulses, doublets, and so forth—in the context of their role in the description and analysis of continuous-time LTI systems. In particular, we stress the interpretation of these signals in terms of how they are defined under convolution, that is, in terms of the responses of LTI systems to these idealized signals.